If it's not what You are looking for type in the equation solver your own equation and let us solve it.
148=16t^2+96t+8
We move all terms to the left:
148-(16t^2+96t+8)=0
We get rid of parentheses
-16t^2-96t-8+148=0
We add all the numbers together, and all the variables
-16t^2-96t+140=0
a = -16; b = -96; c = +140;
Δ = b2-4ac
Δ = -962-4·(-16)·140
Δ = 18176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18176}=\sqrt{256*71}=\sqrt{256}*\sqrt{71}=16\sqrt{71}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{71}}{2*-16}=\frac{96-16\sqrt{71}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{71}}{2*-16}=\frac{96+16\sqrt{71}}{-32} $
| 6w2–7w–20=0. | | 3/2=3x/4=0 | | -16x^2+5x+105=45 | | m/6-8=3 | | -13(5)+(-7/8•x)=-79 | | 9x=14x-7 | | b/9+5=15 | | x/3x–13=8 | | 6x2-78x=0 | | 3/(z+3)=5-z | | 1/2-6/5=x/10 | | -3/4p-3=1/8p-5 | | 7+h=15 | | 10-29=8-3a | | 5(y-2)=8y-37 | | 3x-1x=0 | | 6y-19=47 | | 4v-4v=0 | | -8v+16=-6(v-1) | | 8x+4=2x+7 | | 2p+2K=360 | | 1/3-(7x/1-3/4)=2x | | 8(v+3)=6v+10 | | 11j+35=-30 | | 4x+3/4=5x-3/3 | | 2x-5x+3=4x-8 | | 3x-1x=-30 | | 1/3-(7x-3/4)=2x+(2/6x-5) | | 5.6=1.7p+3.8. | | y+y+30=180 | | 2x+10+4=24 | | 7(p+3)+9=5(p-2)-20 |